Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
1.
PeerJ ; 12: e17142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563001

RESUMO

Background: Genetic knockout-based studies conducted in mice provide a powerful means of assessing the significance of a gene for fertility. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) contains a conserved FHA domain, that is present in many proteins with phospho-threonine reader activity. How FHAD1 functions in male fertility, however, remains uncertain. Methods: Fhad1-/- mice were generated by CRISPR/Cas9-mediated knockout, after which qPCR was used to evaluate changes in gene expression, with subsequent analyses of spermatogenesis and fertility. The testis phenotypes were also examined using immunofluorescence and histological staining, while sperm concentrations and motility were quantified via computer-aided sperm analysis. Cellular apoptosis was assessed using a TUNEL staining assay. Results: The Fhad1-/-mice did not exhibit any abnormal changes in fertility or testicular morphology compared to wild-type littermates. Histological analyses confirmed that the testicular morphology of both Fhad1-/-and Fhad1+/+ mice was normal, with both exhibiting intact seminiferous tubules. Relative to Fhad1+/+ mice, however, Fhad1-/-did exhibit reductions in the total and progressive motility of epididymal sperm. Analyses of meiotic division in Fhad1-/-mice also revealed higher levels of apoptotic death during the first wave of spermatogenesis. Discussion: The findings suggest that FHAD1 is involved in both meiosis and the modulation of sperm motility.


Assuntos
Fosfopeptídeos , Motilidade dos Espermatozoides , Masculino , Camundongos , Animais , Motilidade dos Espermatozoides/genética , Fosfopeptídeos/metabolismo , Camundongos Knockout , Sêmen , Testículo/anatomia & histologia
2.
Anal Methods ; 16(5): 695-703, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214200

RESUMO

The comprehensive investigation of protein phosphorylation and glycosylation aids in the discovery of novel biomarkers as well as the understanding of the pathophysiology of illness. In this work, a nitrogen/titanium-rich porous organic polymer was developed by copolymerizing carbohydrazide (CH) and 2,3-dihydroxyterephthalaldehyde (2,3-Dha) and modifying with Ti4+ (CH-Dha-Ti4+). The adequate nitrogen contributes to the enrichment of glycopeptides via HILIC, while titanium benefits from capturing phosphopeptides through IMAC. The proposed method exhibits excellent selectivity (1 : 1000, both for glycopeptides and phosphopeptides), LOD (for glycopeptides: 0.05 fmol µL-1, for phosphopeptides: 0.2 fmol), loading capacity (for glycopeptides: 100 mg g-1, for phosphopeptides: 125 mg g-1) and size-exclusion effect (1 : 10 000, both for glycopeptides and phosphopeptides). Furthermore, CH-Dha-Ti4+ was applied to capture glycopeptides and phosphopeptides from human serum; 205 glycopeptides and 45 phosphopeptides were detected in the serum of normal controls; and 294 glycopeptides and 63 phosphopeptides were found in the serum of uremia patients after being analyzed by nano LC-MS/MS. The discovered glycopeptides and phosphopeptides were involved in several molecular biological processes and activities, according to a gene ontology study.


Assuntos
Fosfopeptídeos , Polímeros , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Titânio/química , Glicopeptídeos/química , Porosidade , Espectrometria de Massas em Tandem
3.
Mol Plant ; 17(1): 199-213, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018035

RESUMO

Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.


Assuntos
Arabidopsis , Animais , Arabidopsis/metabolismo , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Fosforilação , Fosfoproteínas/metabolismo
4.
J Sci Food Agric ; 104(2): 788-796, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37669105

RESUMO

BACKGROUND: Calcium is important in the formation of bones and teeth, cell metabolism, and other physiological activities. In this work, casein phosphopeptide-calcium chelate (CPP-Ca) was synthesized and the optimal process parameters for the chelation reaction were obtained. The bioavailability of calcium in CPP-Ca was investigated by in vitro gastrointestinal simulated digestion. The existence of phytic acid and oxalic acid in the digestion system was evaluated to clarify the calcium holding ability of casein phosphopeptide (CPP). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify oligopeptides from CPP-Ca. RESULTS: The optimal process parameters for the chelation reaction were: peptide concentration 7.76 mgmL-1 , pH 8.54, and reaction temperature 43.3 °C. The digestion in vitro results indicated that the calcium release rate of CPP-Ca in the stomach for 2 h reached 85%, and about 50% of the ionized calcium was re-chelated with CPP in the intestine. Phytic acid and oxalic acid could lead to a sharp decrease in soluble calcium but around 50% of the calcium was still retained in the form of chelates in the presence of CPP. The LC-MS/MS identified 19 casein-derived oligopeptides after digestion, and calcium modifications were found on eight peptides derived from ß-casein and αs2 -casein. CONCLUSIONS: This study clarified the excellent calcium holding capacity of CPP in the presence of phytic acid and oxalic acid. Liquid chromatography-tandem mass spectrometry also revealed peptide changes, and identified peptides that chelate with calcium. These findings provided significant insights that could be relevant to the further utilization and product development of peptide-calcium chelate in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Cálcio , Fragmentos de Peptídeos , Cálcio/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Caseínas/química , Cromatografia Líquida , Ácido Fítico , Espectrometria de Massas em Tandem , Cálcio da Dieta , Digestão , Oligopeptídeos , Ácido Oxálico
5.
Mol Cell Proteomics ; 23(2): 100707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154692

RESUMO

Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfopeptídeos/metabolismo , Proteômica
6.
Expert Rev Proteomics ; 20(12): 469-482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116637

RESUMO

INTRODUCTION: Protein phosphorylation is a critical post-translational modification involved in the regulation of numerous cellular processes from signal transduction to modulation of enzyme activities. Knowledge of dynamic changes of phosphorylation levels during biological processes, under various treatments or between healthy and disease models is fundamental for understanding the role of each phosphorylation event. Thereby, LC-MS/MS based technologies in combination with quantitative proteomics strategies evolved as a powerful strategy to investigate the function of individual protein phosphorylation events. AREAS COVERED: State-of-the-art labeling techniques including stable isotope and isobaric labeling provide precise and accurate quantification of phosphorylation events. Here, we review the strengths and limitations of recent quantification methods and provide examples based on current studies, how quantitative phosphoproteomics can be further optimized for enhanced analytic depth, dynamic range, site localization, and data integrity. Specifically, reducing the input material demands is key to a broader implementation of quantitative phosphoproteomics, not least for clinical samples. EXPERT OPINION: Despite quantitative phosphoproteomics is one of the most thriving fields in the proteomics world, many challenges still have to be overcome to facilitate even deeper and more comprehensive analyses as required in the current research, especially at single cell levels and in clinical diagnostics.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Fosforilação , 60705 , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise
7.
Biomolecules ; 13(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892202

RESUMO

Sodium bicarbonate stress caused by NaHCO3 is one of the most severe abiotic stresses affecting agricultural production worldwide. However, little attention has been given to the molecular mechanisms underlying plant responses to sodium bicarbonate stress. To understand phosphorylation events in signaling pathways triggered by sodium bicarbonate stress, TMT-labeling-based quantitative phosphoproteomic analyses were performed on soybean leaf and root tissues under 50 mM NaHCO3 treatment. In the present study, a total of 7856 phosphopeptides were identified from cultivated soybeans (Glycine max L. Merr.), representing 3468 phosphoprotein groups, in which 2427 phosphoprotein groups were newly identified. These phosphoprotein groups contained 6326 unique high-probability phosphosites (UHPs), of which 77.2% were newly identified, increasing the current soybean phosphosite database size by 43.4%. Among the phosphopeptides found in this study, we determined 67 phosphopeptides (representing 63 phosphoprotein groups) from leaf tissue and 554 phosphopeptides (representing 487 phosphoprotein groups) from root tissue that showed significant changes in phosphorylation levels under sodium bicarbonate stress (fold change >1.2 or <0.83, respectively; p < 0.05). Localization prediction showed that most phosphoproteins localized in the nucleus for both leaf and root tissues. GO and KEGG enrichment analyses showed quite different enriched functional terms between leaf and root tissues, and more pathways were enriched in the root tissue than in the leaf tissue. Moreover, a total of 53 different protein kinases and 7 protein phosphatases were identified from the differentially expressed phosphoproteins (DEPs). A protein kinase/phosphatase interactor analysis showed that the interacting proteins were mainly involved in/with transporters/membrane trafficking, transcriptional level regulation, protein level regulation, signaling/stress response, and miscellaneous functions. The results presented in this study reveal insights into the function of post-translational modification in plant responses to sodium bicarbonate stress.


Assuntos
Bicarbonato de Sódio , /metabolismo , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/metabolismo , Proteínas de Plantas/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo
8.
Food Funct ; 14(22): 10107-10118, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874279

RESUMO

Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 µg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 µg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.


Assuntos
Caseínas , Fosfopeptídeos , Ratos , Animais , Fosfopeptídeos/farmacologia , Fosfopeptídeos/metabolismo , Caseínas/metabolismo , Fosforilação , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Osteogênese , Diferenciação Celular , Proliferação de Células , Osteoblastos , Receptores ErbB/metabolismo
9.
J Microbiol ; 61(8): 755-764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37684534

RESUMO

Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/genética , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo
10.
Mol Cell Proteomics ; 22(10): 100639, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657519

RESUMO

Recent advances in methodology have made phosphopeptide analysis a tractable problem for many proteomics researchers. There are now a wide variety of robust and accessible enrichment strategies to generate phosphoproteomes while free or inexpensive software tools for quantitation and site localization have simplified phosphoproteome analysis workflow tremendously. As a research group under the Association for Biomolecular Resource Facilities umbrella, the Proteomics Standards Research Group has worked to develop a multipathway phosphopeptide standard based on a mixture of heavy-labeled phosphopeptides designed to enable researchers to rapidly develop assays. This mixture contains 131 mass spectrometry vetted phosphopeptides specifically chosen to cover as many known biologically interesting phosphosites as possible from seven different signaling networks: AMPK signaling, death and apoptosis signaling, ErbB signaling, insulin/insulin-like growth factor-1 signaling, mTOR signaling, PI3K/AKT signaling, and stress (p38/SAPK/JNK) signaling. Here, we describe a characterization of this mixture spiked into a HeLa tryptic digest stimulated with both epidermal growth factor and insulin-like growth factor-1 to activate the MAPK and PI3K/AKT/mTOR pathways. We further demonstrate a comparison of phosphoproteomic profiling of HeLa performed independently in five labs using this phosphopeptide mixture with data-independent acquisition. Despite different experimental and instrumentation processes, we found that labs could produce reproducible, harmonized datasets by reporting measurements as ratios to the standard, while intensity measurements showed lower consistency between labs even after normalization. Our results suggest that widely available, biologically relevant phosphopeptide standards can act as a quantitative "yardstick" across laboratories and sample preparations enabling experimental designs larger than a single laboratory can perform. Raw data files are publicly available in the MassIVE dataset MSV000090564.


Assuntos
Fosfopeptídeos , Proteínas Proto-Oncogênicas c-akt , Fosforilação , Fosfopeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfoproteínas/metabolismo
11.
Anal Methods ; 15(32): 3984-3990, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37534964

RESUMO

There is growing interest in the development of materials for enriching proteins and phosphoproteins from complex sample matrices for mass spectrometric analysis. Herein, we designed and synthesized two types of magnetic resin composites, i.e., MTS9200@Fe3O4 and FPA90CL@Fe3O4, and assessed their applications as adsorbents for enriching proteins, peptides and phosphopeptides. With the combination of Fe3+-IMAC interaction (MTS9200) or electrostatic attraction (FPA90CL) of resins and the adsorption of Fe3O4, the prepared composites exhibited higher capacities for adsorbing a protein (bovine serum albumin, at 195.71 and 135.03 mg g-1 for MTS9200@Fe3O4 and FPA90CL@Fe3O4, respectively) than MTS9200, FPA90CL and Fe3O4. In addition, due to the contributions of the hydrophobic skeleton of resins and Fe3O4, the magnetic resin composites allowed for efficient enrichment of peptides. Moreover, through Fe3+-IMAC interaction or electrostatic attraction of resins and Fe-O MOAC interaction of Fe3O4 with phosphate groups, phosphopeptides could also be captured. Furthermore, we employed the prepared composites for enriching proteins and phosphopeptides from human serum, where 466 and 506 proteins, and 434 and 356 phosphorylation sites, were detected from human serum after being processed with FPA90CL@Fe3O4 and MTS9200@Fe3O4, respectively. Together, our work revealed the great potential of magnetic resin composites as enrichment materials for proteomics and phosphoproteomics analysis.


Assuntos
Fosfopeptídeos , Soroalbumina Bovina , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Espectrometria de Massas/métodos , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Fosfoproteínas , Fenômenos Magnéticos
12.
Nat Commun ; 14(1): 3599, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328457

RESUMO

Achieving sufficient coverage of regulatory phosphorylation sites by mass spectrometry (MS)-based phosphoproteomics for signaling pathway reconstitution is challenging, especially when analyzing tiny sample amounts. To address this, we present a hybrid data-independent acquisition (DIA) strategy (hybrid-DIA) that combines targeted and discovery proteomics through an Application Programming Interface (API) to dynamically intercalate DIA scans with accurate triggering of multiplexed tandem mass spectrometry (MSx) scans of predefined (phospho)peptide targets. By spiking-in heavy stable isotope labeled phosphopeptide standards covering seven major signaling pathways, we benchmark hybrid-DIA against state-of-the-art targeted MS methods (i.e., SureQuant) using EGF-stimulated HeLa cells and find the quantitative accuracy and sensitivity to be comparable while hybrid-DIA also profiles the global phosphoproteome. To demonstrate the robustness, sensitivity, and biomedical potential of hybrid-DIA, we profile chemotherapeutic agents in single colon carcinoma multicellular spheroids and evaluate the phospho-signaling difference of cancer cells in 2D vs 3D culture.


Assuntos
Fosfopeptídeos , Proteômica , Humanos , Proteômica/métodos , Células HeLa , Fosfopeptídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Transdução de Sinais , Proteoma/metabolismo
13.
Nat Commun ; 14(1): 3763, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353482

RESUMO

Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.


Assuntos
Fosfopeptídeos , Receptores de Antígenos de Linfócitos T , Humanos , Fosfopeptídeos/metabolismo , Ligação Proteica
14.
Angew Chem Int Ed Engl ; 62(29): e202305668, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216424

RESUMO

Many biological processes are regulated through dynamic protein phosphorylation. Monitoring disease-relevant phosphorylation events in circulating biofluids is highly appealing but also technically challenging. We introduce here a functionally tunable material and a strategy, extracellular vesicles to phosphoproteins (EVTOP), which achieves one-pot extracellular vesicles (EVs) isolation, extraction, and digestion of EV proteins, and enrichment of phosphopeptides, with only a trace amount of starting biofluids. EVs are efficiently isolated by magnetic beads functionalized with TiIV ions and a membrane-penetrating peptide, octa-arginine R8 + , which also provides the hydrophilic surface to retain EV proteins during lysis. Subsequent on-bead digestion concurrently converts EVTOP to TiIV ion-only surface for efficient enrichment of phosphopeptides for phosphoproteomic analyses. The streamlined, ultra-sensitive platform enabled us to quantify 500 unique EV phosphopeptides with only a few µL of plasma and over 1200 phosphopeptides with 100 µL of cerebrospinal fluid (CSF). We explored its clinical application of monitoring the outcome of chemotherapy of primary central nervous system lymphoma (PCNSL) patients with a small volume of CSF, presenting a powerful tool for broad clinical applications.


Assuntos
Vesículas Extracelulares , Fosfopeptídeos , Humanos , Fosfopeptídeos/metabolismo , Vesículas Extracelulares/química , Proteoma/metabolismo , Fosfoproteínas/metabolismo
15.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244255

RESUMO

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Assuntos
Fosfopeptídeos , Receptores CCR5 , Humanos , Fosforilação , beta-Arrestinas/metabolismo , Fosfopeptídeos/metabolismo , Receptores CCR5/metabolismo , Linhagem Celular
16.
Mol Cell Proteomics ; 22(5): 100538, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004988

RESUMO

Posttranslational modifications of proteins play essential roles in defining and regulating the functions of the proteins they decorate, making identification of these modifications critical to understanding biology and disease. Methods for enriching and analyzing a wide variety of biological and chemical modifications of proteins have been developed using mass spectrometry-based proteomics, largely relying on traditional database search methods to identify the resulting mass spectra of modified peptides. These database search methods treat modifications as static attachments of a mass to particular position in the peptide sequence, but many modifications undergo fragmentation in tandem mass spectrometry experiments alongside, or instead of, the peptide backbone. While this fragmentation can confound traditional search methods, it also offers unique opportunities for improved searches that incorporate modification-specific fragment ions. Here, we present a new labile mode in the MSFragger search engine that provides the flexibility to tailor modification-centric searches to the fragmentation observed. We show that labile mode can dramatically improve spectrum identification rates of phosphopeptides, RNA-crosslinked peptides, and ADP-ribosylated peptides. Each of these modifications presents distinct fragmentation characteristics, showcasing the flexibility of MSFragger labile mode to improve search for a wide variety of biological and chemical modifications.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Proteômica/métodos , Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Fosfopeptídeos/metabolismo , Bases de Dados de Proteínas
17.
Nat Commun ; 14(1): 2269, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080984

RESUMO

Protein phosphorylation is a post-translational modification crucial for many cellular processes and protein functions. Accurate identification and quantification of protein phosphosites at the proteome-wide level are challenging, not least because efficient tools for protein phosphosite false localization rate (FLR) control are lacking. Here, we propose DeepFLR, a deep learning-based framework for controlling the FLR in phosphoproteomics. DeepFLR includes a phosphopeptide tandem mass spectrum (MS/MS) prediction module based on deep learning and an FLR assessment module based on a target-decoy approach. DeepFLR improves the accuracy of phosphopeptide MS/MS prediction compared to existing tools. Furthermore, DeepFLR estimates FLR accurately for both synthetic and biological datasets, and localizes more phosphosites than probability-based methods. DeepFLR is compatible with data from different organisms, instruments types, and both data-dependent and data-independent acquisition approaches, thus enabling FLR estimation for a broad range of phosphoproteomics experiments.


Assuntos
Fosfopeptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Fosfopeptídeos/metabolismo , Proteômica/métodos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
18.
J Am Chem Soc ; 145(8): 4366-4371, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669158

RESUMO

Innovative methods for engineering cancer cell membranes promise to manipulate cell-cell interactions and boost cell-based cancer therapeutics. Here, we illustrate an in situ approach to selectively modify cancer cell membranes by employing an enzyme-instructed peptide self-assembly (EISA) strategy. Using three phosphopeptides (pY1, pY2, and pY3) targeting the membrane-bound epidermal growth factor receptor (EGFR) and differing in just one phosphorylated tyrosine, we reveal that site-specific phosphorylation patterns in pY1, pY2, and pY3 can distinctly command their preorganization levels, self-assembling kinetics, and spatial distributions of the resultant peptide assemblies in cellulo. Overall, pY1 is the most capable of producing preorganized assemblies and shows the fastest dephosphorylation reaction in the presence of alkaline phosphatase (ALP), as well as the highest binding affinity for EGFR after dephosphorylation. Consequently, pY1 exhibits the greatest capacity to construct stable peptide assemblies on cancer cell membranes with the assistance of both ALP and EGFR. We further use peptide-protein and peptide-peptide co-assembly strategies to apply two types of antigens, namely ovalbumin (OVA) protein and dinitrophenyl (DNP) hapten respectively, on cancer cell membranes. This study demonstrates a very useful technique for the in situ construction of membrane-bound peptide assemblies around cancer cells and implies a versatile strategy to artificially enrich cancer cell membrane components for potential cancer immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfatase Alcalina/metabolismo
19.
Neuroimmunomodulation ; 30(1): 28-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599309

RESUMO

INTRODUCTION: Inflammation in early life is a risk factor for the development of neuropsychiatric diseases later in adolescence and adulthood, yet the underlying mechanism remains elusive. In the present study, we performed an integrated proteomic and phosphoproteomic analysis of the hippocampus to identify potential molecular mechanisms of early life inflammation-induced cognitive impairment. METHODS: Both female and male mice received a single intraperitoneal injection of 100 µg/kg lipopolysaccharide (LPS) on postnatal day 10 (P10). Behavioral tests, including open field, elevated plus-maze, and Y-maze tests, were performed on P39, P40, and P41, respectively. After behavioral tests, male mice were sacrificed. The whole brain tissues and the hippocampi were harvested on P42 for proteomic, phosphoproteomic, Western blot, and Golgi staining. RESULTS: Early life LPS exposure induced cognitive impairment in male mice but not in female mice, as assessed by the Y-maze test. Therefore, following biochemical tests were conducted on male mice. By proteomic analysis, 13 proteins in LPS group exhibited differential expression. Among these, 9 proteins were upregulated and 4 proteins were downregulated. For phosphoproteomic analysis, a total of 518 phosphopeptides were identified, of which 316 phosphopeptides were upregulated and 202 phosphopeptides were downregulated in the LPS group compared with the control group. Furthermore, KEGG analysis indicated that early life LPS exposure affected the glutamatergic synapse and neuroactive ligand-receptor interaction, which were associated with synaptic function and energy metabolism. Increased level of brain protein i3 (Bri3), decreased levels of PSD-95 and mGLUR5, and dendritic spine loss after early life LPS exposure further confirmed the findings of proteomic and phosphoproteomic analysis. CONCLUSIONS: Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.


Assuntos
Lipopolissacarídeos , Fosfopeptídeos , Animais , Masculino , Feminino , Camundongos , Lipopolissacarídeos/toxicidade , Fosfopeptídeos/efeitos adversos , Fosfopeptídeos/metabolismo , Proteômica , Inflamação/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
20.
FEBS J ; 290(9): 2366-2378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36282120

RESUMO

Protein conformational changes with fluctuations are fundamental aspects of protein-protein interactions (PPIs); understanding these motions is required for the rational design of PPI-regulating compounds. Src homology 2 (SH2) domains are commonly found in adapter proteins involved in signal transduction and specifically bind to consensus motifs of proteins containing phosphorylated tyrosine (pY). Here, we analysed the interaction between the N-terminal SH2 domain (nSH2) of the regulatory subunit in phosphoinositide 3-kinase (PI3K) and the cytoplasmic region of the T-cell co-receptor, CD28, using NMR and molecular dynamics (MD) simulations. First, we assigned the backbone signals of nSH2 on 1 H-15 N heteronuclear single quantum coherence spectra in the absence or presence of the CD28 phosphopeptide, SDpYMNMTPRRPG. Chemical shift perturbation experiments revealed allosteric changes at the BC loop and the C-terminal region of nSH2 upon CD28 binding. NMR relaxation experiments showed a conformational exchange associated with CD28 binding in these regions. The conformational stabilisation of the C-terminal region correlated with the regulation of PI3K catalytic function. Further, using 19 F- and 31 P-labelled CD28 phosphopeptide, we analysed the structural dynamics of CD28 and demonstrated that the aromatic ring of the pY residue fluctuated between multiple conformations upon nSH2 binding. Our MD simulations largely explained the NMR results and the structural dynamics of nSH2 and CD28 in both bound and unbound states. Notably, in addition to its major conformation, we detected a minor conformation of nSH2 in the CD28 bound state that may explain the allosteric conformational change in the BC loop.


Assuntos
Fosfatidilinositol 3-Quinases , Domínios de Homologia de src , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Antígenos CD28/genética , Antígenos CD28/química , Antígenos CD28/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...